

Влияние вариации элементного состава газа на молекулярную кинетику

О.П. Воробьев¹ ¹Физический институт им. П. Н. Лебедева, Москва

Низкая эффективность перемешивания металлов в межзвездном газе приводит к тому, что в среде долгое время сохраняются неоднородности в их пространственном распределении. В этой работе исследовано влияние вариаций содержания кислорода и углерода на химическую и тепловую эволюцию газа в плотных облаках за фронтом ударной волны от сверхновых.

Модель

Для моделирования тепловой и химической эволюции молекулярного газа за фронтом ударной волны использовался программный пакет KROME. Химическая кинетика рассчитывается для лагранжева элемента газа и включает в себя 37 компонент, объединенных 260 реакциями в газовой фазе: Н, Н⁺, H⁻, H₂, H₂⁺, H₃⁺, He, He⁺, He⁺⁺, C, C⁺, C⁻, CH⁺, CH₂⁺, CH₃⁺, C₂, O, $0^+, 0^-, 0H, 0H^+, 0_2, H_20, H_20^+, H_30^+, CO, HCO, HO\overline{C}^+, HCO^+, CO^+, HCO^+, CO^+, HCO^+, CO^+, HCO^+, CO^+, HCO^+, CO^+, HCO^+, HC$ Si, Si⁺, Si⁺⁺. В уравнении для температуры учитываются основные процессы охлаждения и нагрева, присущие плотным молекулярным облакам. Скорость УВ меняется в пределах 5–15 км/с, плотность газа в пределах 10³–10⁵ см⁻³. Распространенности С и О варьируются в пределах ±0.3 dex от солнечных значений: например, распространенность углерода [С/Н] меняется от 0.7 · 10⁻⁴ до 2.8 \cdot 10⁻⁴. Коэффициент экстинкции менялся от $A_v = 0.1$ (слабо экранированный газ) до 10 (сильное экранирование), скорость ионизации ζ_{H2} = 10⁻¹⁷–10⁻¹⁵ см⁻³, УФ-поле G = 1–10 G₀, где

Рис. 1. Эволюция относительной концентрации молекул воды x(H2O) = n(H2O)/n(H) (панели a,b) и температуры газа (панели c,d) при вариации распространенности δ[X/H] = ±0.3 dex для кислорода (панели a,c) и углерода (панели b,d) в газе в плотностью n_н = 10⁴ см⁻³, за фронтом ударной волны со скоростью 15 км/с и находящимся в поле внешнего излучения с потоком 1G₀ и его ослаблении для значений экстинкции A_v = 1 и 10. Скорость ионизации космическими лучами равна ζ_н = 10⁻¹⁷ с⁻¹.

G₀ = 1.7 – поток излучения в МЗС в единицах Хэбинга.

Рис. 2. Концентрация молекул H2O, CO и HCO+ в зависимости от экстинкции Av для вариации распространенности δ[X/H] = ±0.3 dex для кислорода (панели а-с) и углерода (панели d-f) в газе с плотностью 10⁴ см⁻³ через 1000 лет после прохождения ударной волны со скоростью 15 км/с и находящимся в поле внешнего поля излучения с потоком 1G_∩ и его ослаблении для значений экстинкции A_v = 1 и 10. Скорость ионизации космическими лучами равна $\zeta_{H2} = 10^{-17} \, c^{-1}$.

Влияние внешних условий

На рисунке 3 показан относительный прирост концентрации молекул воды за фронтом ударной волны со скоростью 15, 9 и 5 км/с. Горизонтальная линия $x(\delta[X/H]) - x(0) = 0$ соответствует нулевому отклонению от значения концентрации молекул при солнечном составе. Показана зависимость прироста концентрации Н₂О при варьировании распространенности С и О от концентрации при солнечных значениях С и О. Вдоль линий меняется Av от 0.1 до 10. Видно, что при некоторых значениях параметров концентрация воды может отклоняться почти на 2 порядка.

На рисунке 1 можно видеть, что рост содержания кислорода на 0.3 dex приводит к увеличению доли молекул H₂O газе с Av = 10 почти в три раза в период до t ≤ 10⁵ лет по сравнению с эволюцией для солнечного значения. При этом такое же уменьшение содержания кислорода проявляется в падении x(H₂0) почти на порядок. При увеличении [С/Н] концентрация молекул воды падает почти в 5 раз, а при уменьшении незначительно растет (рис. 1b). Аналогичные отклонения видны и на рис. 2, где приводятся концентрации молекул H₂O, CO и HCO⁺ в зависимости от Av через 1000 лет после прохождения ударной волны.

Рис. 3. Прирост концентрации H_2O при вариации содержания кислорода на δ [O/H] ± 0.3 dex (панель a) и углерода δ [C/H] ± 0.3 dex (панель b) относительно газа с солнечными значениями распространенности элементов при соответствующем значении А... Сама

Рис. 4. Отношение интенсивности излучения молекул воды в линии 557 ГГц при вариации содержания кислорода на δ [O/H] ±0.3 dex (панель а) и углерода δ[C/H] ±0.3 dex (панель b) к величине I_о для солнечных значений распространенности элементов в слое газа, находящихся во внешнем поле излучения с потоком 1G₀, ослабленном поглощением в ехр(– А,) раз. Темп ионизации космическими лучами ζ_{H_2} = 10⁻¹⁷ с⁻¹. Интенсивности рассчитаны для слоя газа с плотностью n = 10⁴ см⁻³, нагретого ударной волной со скоростью 15 км/с в течение 1000 лет. Распределения температуры и концентрации для газа, остывающего за фронтом ударной волны, получены в KROME. Эмиссионная способность газа вычислена с помощью пакета для расчета радиационного переноса RADMC-3D.

величина экстинкции А, меняется от 0.1 до 10 и показана цветовой шкалой. Толстые линии соответствуют увеличению δ [X/H] на 0.3 dex, тонкие – уменьшению. Показаны значения через 1000 лет после прохождения ударной волны со скоростью 15, 9 и 5 км/с (линии отмечены соответствующими числами). Плотность n_н = 10⁴см⁻³, ζ_{H2} = 10⁻¹⁷. Справа (панели с и d) то же, что но для скорости ударной волны 15 км/с и темпа ионизации космическими лучами $\zeta_{H_2} = 10^{-17}$, 10^{-16} , 10^{-15} с⁻¹ (метки соответствуют логарифму ζ_{H_2}).

Результаты

- изменения концентраций молекул Н2О, СО, НСО+ и других не вариации содержания пропорциональны кислорода и углерода;
- концентрация молекул воды возрастает при увеличении [О/Н], а при более высоком значении [С/Н] падает;
- прирост концентрации молекул НСО+ к значению при эволюции для солнечного химического состава изменяет знак в зависимости от величины экстинкции
- отклонения концентраций молекул воды падают при уменьшении скорости ударной волны, а также при росте потока УФ-излучения и темпа ионизации космическими лучами, и нелинейно зависят от концентрации газа.